首页> 外文OA文献 >Global Minimum for a Finsler Elastica Minimal Path Approach
【2h】

Global Minimum for a Finsler Elastica Minimal Path Approach

机译:Finsler Elastica最小路径方法的全局最小值

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a novel curvature-penalized minimal path model viaan orientation-lifted Finsler metric and the Euler elastica curve. The originalminimal path model computes the globally minimal geodesic by solving an Eikonalpartial differential equation (PDE). Essentially, this first-order model isunable to penalize curvature which is related to the path rigidity property inthe classical active contour models. To solve this problem, we present anEikonal PDE-based Finsler elastica minimal path approach to address thecurvature-penalized geodesic energy minimization problem. We were successful atadding the curvature penalization to the classical geodesic energy. The basicidea of this work is to interpret the Euler elastica bending energy via a novelFinsler elastica metric that embeds a curvature penalty. This metric isnon-Riemannian, anisotropic and asymmetric, and is defined over anorientation-lifted space by adding to the image domain the orientation as anextra space dimension. Based on this orientation lifting, the proposed minimalpath model can benefit from both the curvature and orientation of the paths.Thanks to the fast marching method, the global minimum of thecurvature-penalized geodesic energy can be computed efficiently. We introducetwo anisotropic image data-driven speed functions that are computed bysteerable filters. Based on these orientation-dependent speed functions, we canapply the proposed Finsler elastica minimal path model to the applications ofclosed contour detection, perceptual grouping and tubular structure extraction.Numerical experiments on both synthetic and real images show that theseapplications of the proposed model indeed obtain promising results.
机译:在本文中,我们通过定向提升的Finsler度量和Euler弹性曲线提出了一种新颖的曲率罚分最小路径模型。原始最小路径模型通过求解Eikonalpartial微分方程(PDE)来计算全局最小测地线。本质上,该一阶模型无法惩罚曲率,这与经典活动轮廓模型中的路径刚度特性有关。为了解决这个问题,我们提出了一种基于PDE的Finsler弹性最小路径方法,以解决曲率污染的测地能量最小化问题。我们成功地将曲率罚分添加到经典测地能量中。这项工作的基本思想是通过嵌入曲率罚分的新型Finsler弹性度量来解释Euler弹性弯曲能。该度量是非黎曼,各向异性和非对称的,并且通过在图像域中添加作为额外空间尺寸的方向来定义在定向提升空间上。基于这种方向提升,所提出的最小路径模型可以同时受益于路径的曲率和方向。借助快速行进方法,可以有效地计算出弧线化的测地线能量的全局最小值。我们介绍了两个由各向异性图像数据驱动的速度函数,它们是由可控滤波器计算的。基于这些与方向相关的速度函数,我们可以将拟议的Finsler弹性极小路径模型应用于闭合轮廓检测,感知分组和管状结构提取的应用。对合成图像和实像的数值实验表明,所提出的模型的这些应用确实获得了希望结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号